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Review

▶ Scatterplot descriptions
▶ form, strength, direction, outliers

▶ Pearson’s correlation (r)
▶ strength and direction of linear relationship for 2 quant. variables

▶ Spearman’s correlation (ρ)
▶ strength and direction of monotone relationship
▶ more robust to outliers
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Motivation

If I asked you to guess your income after ten years, how would you guess?
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Motivation

If I told you my salary, how would you guess your (future) income?
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Linear Regression allows us to do this formally
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Correlation, Causation Review

Should you all tell the administration to raise my salary so your future
income increases?

25000

50000

75000

100000

125000

50000 100000 150000
Avg_Fac_Salary

S
al

ar
y1

0y
r_

m
ed

ia
n

Grinnell College SST-115 September 26, 2025 6 / 47



Correlation, Causation Review

Should you all tell the administration to raise my salary so your future
income increases?
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Yes!! But it won’t actually increase your income. They are correlated but
one doesn’t cause the other (at least directly).
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Basic Idea

Regression is how we model data; for us it’s the “best fit line”

Two Main Goals:

▶ Use the regression/our best fit line(s) to describe the relationship
between the explanatory variable(s) and the response variable

▶ Science!
▶ Hypothesis testing

▶ Use the explanatory variable(s) to predict the response variable
▶ Machine Learning/AI stuff
▶ Business/finance investments
▶ Planning around weather
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Notation

▶ The variable being predicted is the response (aka “variable of
interest”)

▶ Usually denoted as y

▶ the variable we are using to do the prediction/explanation is the
explanatory variable (aka “covariate” or occasionally “predictor”)

▶ Usually denoted as x or X

▶ The estimates themselves are usually denoted with a “hat”
▶ ŷ is our predicted response
▶ β̂0 and β̂1 are our estimated intercept and slope of the regression line

(more in a second)
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Notation Comparison

Statisticians use different symbols to write out a line than what you
probably saw in HS algebra

Algebra
y = mx + b
m = slope: change in y over the change in x (rise / run)
b = intercept: value where the line cross the y-axis
All points fall exactly on the line

Statistics
ŷ = β0 + β1X
β1 = slope
β0 = intercept
Not all of our data points will exactly on the line → variability
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How it works

A regression line for the canidae data set predicting bite force (response)
using body mass (explanatory)

▶ y’s denote the values of the datapoints for the response variable
▶ points on the line are predicted values for the y’s, denoted as ŷ

▶ ŷ are ALWAYS on our best-fit-line

▶ residual: difference between data and predictions (e = y - ŷ)
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How it works

The regression line is the line that best fits through the data

▶ Need to define “best”

▶ Optimality critera: minimizes sum of squared residuals
∑

e2i
▶ Least Squares Regression is another, more explicit name for this
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Some Formulas

▶ ŷ = β0 + β1X (regression equation)

▶ ŷ = β̂0 + β̂1X (estimated regression equation)

▶ β̂1 = ( sxsy )r (estimated slope)

▶ β̂0 = y − β̂1x (estimated intercept)

▶ e = y - ŷ (residual)
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Regression Line vs Estimated Regression Line

What is the difference between these two? Why do we have two?

▶ ŷ = β0 + β1X (regression equation)

▶ ŷ = β̂0 + β̂1X (estimated regression equation)

Grinnell College SST-115 September 26, 2025 14 / 47



Regression Line vs Estimated Regression Line

What is the difference between these two? Why do we have two?

▶ ŷ = β0 + β1X (regression equation)

▶ ŷ = β̂0 + β̂1X (estimated regression equation)

β0 and β1 are population parameters which means we almost never know
them. Instead we have to estimate them using our sample.

Again,ˆ(called hat) means estimated
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Pearson’s Height Data

Mean Std.Dev. Correlation (rxy )

Father 67.68 2.74
0.501

Son 68.68 2.81

Father Son

65.0 59.8
63.3 63.2
65.0 63.3
65.8 62.8
61.1 64.3
63.0 64.2

...
...
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Pearson’s Height Data

We could calculate our regression line using info from this table.

Mean Std.Dev. Correlation (rxy )

Father 67.68 2.74
0.501

Son 68.68 2.81

Regression equation:
ŷ = β̂0 + β̂1X

β̂1 = (
sx
sy
)r

= (
2.81

2.74
)0.501 = 0.514

β̂0 = y − β̂1x

= 68.68− 0.514 ∗ 67.68 = 33.893
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Pearson’s Height Data – Plot Line

We can make R graph the line on our scatterplot.
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Pearson’s Height Data – Prediction

The formula for the regression line

ŷ = β0 + Xβ1

can be expressed in context of our original data and our estimated values

̂Son’s Height = 33.9 + 0.51× Father’s Height

Given the Father’s height, we can predict the son’s height using this equation by
plugging in a value for the father’s height

Example: Predict the height of the son for a father with a height of 65in.

̂Son’s Height = 33.9 + 0.51× 65.0 =?
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Pearson’s Height Data – Prediction

The formula for the regression line

ŷ = β0 + Xβ1

can be expressed in context of our original data and our estimated values

̂Son’s Height = 33.9 + 0.51× Father’s Height

Given the Father’s height, we can predict the son’s height using this equation by
plugging in a value for the father’s height

Example: Predict the height of the son for a father with a height of 65in.

̂Son’s Height = 33.9 + 0.51× 65.0 = 67.30in.
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Pearson’s Height Data – Prediction

Predicted Son’s Height = 67.30 inches for a father with height = 65in
▶ Check to see if our prediction makes sense on the graph
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Residual

A Residual is the difference between an observed value and a prediction

▶ often labeled as e (e for ”error”, occasionally ϵ)

▶ e = y - ŷ

Interpretation: the residual tells us whether we have over- or
under-predicted the values for the response variable in our data (and by
how much)

▶ positive value → under-predicted

▶ negative value → over-predicted

▶ hard truth → I always forget which is which
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Pearson’s Height Data – Residual

In our data set, the first father had a height of 65 inches. We can
calculate the residual for this father. We predicted the son’s height to be
67.30 inches.

e = y − ŷ

= observed value - predicted value

= 59.8in.− 67.30in. = −7.5in.

Interpretation: We overpredicted
the height of this particular son by
7.5 inches

Father Son

65.0 59.8
63.3 63.2
65.0 63.3
65.8 62.8
61.1 64.3
63.0 64.2

...
...
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Next Time

At this point everything we’ve done in linear regression has only been a
mathematical result

▶ The Best-fit-line is a geometric minimization problem

▶ We have yet to make assumptions

Next time, we will introduce the assumptions for SLR and then
interpretations for the slope and intercept

▶ Assumptions are wrong -> best fit line is wrong

▶ ALWAYS check the assumptions before you worry about your
interpretations/model’s results

▶ NO INTERPRETATION for β̂0 or β̂1 is valid if the assumptions are
broken (in a meaningful way)
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Assumptions

Need to check all of the following (in any order)

1. X and y have a linear relationship
▶ Want a straight line
▶ Curvy lines, expoenential growth, etc... won’t work

2. The errors are normally distributed with mean 0

3. The errors have a constant st. dev. (homoskedasticity)

4. The errors are not correlated (independent)

The last of these can be abbreviated to

ei
iid∼ N(0, σ) (1)
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Independence

This is the odd man out as it’s hard to check visually

▶ Has to be checked via critical reflection

▶ Verrrry common assumption to mess up
▶ psuedo − replication is when an observational unit is measured twice

(or more) and treated as two (or more) units

▶ Eg I weigh 2 students 5 times. I have 10 numbers but still only 2
students

▶ Ways to deal with this (mixed models)

▶ Things to ask yourself:
▶ Is there a reason one observation might influence another observation?
▶ If I told you the errors of the observations around a given observation

would you have any information?
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Checking Assumptions

The majority of your assumptions can and will be checked visually using
graphics created from the residuals. Two super common types

▶ Residual Plot
▶ Also called the residual-by-predicted plot
▶ x-axis is predicted value
▶ y-axis is the residual
▶ want a cloud of points centered around the residual = 0 line.
▶ Super important graph

▶ QQ-plot (Q = Quantile)
▶ x-axis is the predicted values
▶ y-axis is the observed values
▶ want a straight 45 degree line

COLOR and SHAPE your residuals by categorical variables!!!!

Grinnell College SST-115 September 26, 2025 27 / 47



Homoskedasticity

Homo -> same
...skedasticity -> randomness

▶ Want the residuals to have an equal spread/st. dev.

▶ Do NOT want fan/trumpet shapes; things that bulge in the middle,
etc...

▶ Often driven by underlying scientific mechanism
▶ eg weight of infants has a narrow range compared to weight of childern

compared to the weight of adults
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Normality

Normal (bell-shaped) residuals are not critical for fitting the line but are
important for inference about our line

▶ Want data points equally scattered above and below the line

▶ No noticeable pattern outside of a cloud of points

▶ Often violated by data that are proportions or who take counts near 0

▶ Eg you can’t have data outside of 0-10 for the number of heads in 10
coin flips

⋆ Logistic regression is better

▶ Eg Number of deer bagged during hunting season is very close to 0 but
never negative and always a whole number

⋆ Poisson regression is better
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Linear Relationship between X and Y

The scatterplot for the the explanatory and response variable(s) should be
roughly linear

▶ Ie If you were going to free hand draw a line, it needs to be a straight
line

▶ Curves, exponential, logarithmic, periodic waves, etc... use other
techniques

▶ We will get into a few later on

▶ Can be checked from the scatterplot initially and again from the
residual plot later on
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Slope Interpretation

Est. regression equation: ŷ = β̂0 + β̂1X

What happens when we increase X by 1 unit?
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Slope Interpretation

Est. regression equation: ŷ = β̂0 + β̂1X

What happens when we increase X by 1 unit?

We’d expect the response variable to increase by the value β̂1, which is our
slope
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Slope Interpretation

The more formal interpretations of the slope β̂1 are....

Interpretation 1: For each 1 unit change in the explanatory variable (x),
the value of the response variable (y) will change by the [value of slope],
on average.

Interpretation 2: For each 1 unit change in the explanatory variable (x),
the predicted value of the response variable (y) will change by [value of
slope].
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Intercept Interpretation

Est. regression equation: ŷ = β̂0 + β̂1X

What does β̂0 do? What’s it’s geometric interpretation?
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Intercept Interpretation

Est. regression equation: ŷ = β̂0 + β̂1X

What does β̂0 do? What’s it’s geometric interpretation?

The intercept is value of our best fit line when X = 0. That is, it’s where
our line crosses the y-axis.
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Intercept Interpretation

Est. regression equation: ŷ = β̂0 + β̂1X

Interpretation: When the explanatory variable (x) is zero, we predict the
response variable (y) to have a value of [intercept value].

Ask yourself: Does the intercept interpretation make sense?

▶ Is the intercept value actually possible for our response variable?

▶ Is x = 0 a reasonable situation?
▶ Temperature in Celcius? Yes
▶ Weight of a car? No
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Interpretation Tips

▶ Always take a deep breath and ask yourself if your regression line
makes sense and do you see why it is where it is

▶ Interpretations for β̂0 are rarely meaningful/physically possible

▶ Our interpretations deal with generalities

▶ Always want to say something like “we believe/predict” or “on
average”

▶ Don’t sound definitive
⋆ eg “Our salaries in 10 years will increase if Vinny gets a sizable raise” is

incorrect
⋆ Usually this ties into correlation not being causation
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Pearson’s Height Data – Interpretations

̂Son’s Height = 33.9 + 0.51× Father’s Height

Slope Interpretation:

For each 1 inch change in Father’s height, the prediction for son’s height
changes by 0.51 inches. OR

For each 1 inch change in Father’s height, the son’s height changes by
0.51 inches, on average.
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Pearson’s Height Data – Interpretations

̂Son’s Height = 33.9 + 0.51× Father’s Height

Intercept Interpretation:

When the father’s height is zero inches, the predicted height for the son is
33.9 inches.

▶ does this make sense?
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Intercept and Extrapolation

Extrapolation means making
predictions for values outside the
area of our data

▶ These predictions are
unreliable, since we don’t
know if the relationship is
true for these values
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Extrapolation

In 2004, an article was published in Nature titled “Momentous sprint at the 2156
Olympics.” The authors plotted the winning times of men’s and women’s 100m dash in
every Olympic contest, fitting separate regression lines to each; they found that the two
lines will intersect at the 2156 Olympics. Here are a few of the headlines:

▶ “Women ‘may outsprint men by 2156’” – BBC News

▶ “Data Trends Suggest Women Will Outrun Men in 2156” – Scientific American

▶ “Women athletes will one day out-sprint men” – The Telegraph

▶ “Why women could be faster than men within 150 years” – The Guardian
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12 years of data later
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Asymmetry

Unlike correlation regression is asymmetrical : the choice of explanatory
and response variables matter for the line
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Sum of Squares

There exists a geometric relationship

The total sum of squares (TSS, variability) in y can be broken down into
two pieces. The sum of the square of the errors (SSE) and the sum of the
squares of the model (SSM).

TSS = SSM + SSE

R2 is SSM / TSS

That is, it’s how much variability in y we can explain using our model

Grinnell College SST-115 September 26, 2025 45 / 47



Assessing Quality of Fit

Coefficient of determination (R2)

▶ measures how close the observations match the predictions

▶ ratio written as decimal or percentage between 0% and 100%

▶ larger values imply better fit, stronger linear relationship between the
variables

▶ It’s a single statistic and can be useless at times

Interpretation:
R2 is the percentage of variation in the observed values of the response
variable (y) that can be explained with the linear regression model
including the explanatory variable (x). [include context]
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Assessing Quality of Fit

We also saw that the correlation coefficient (r) can be used to quantify
the strength of the linear relationship.

There is a connection between r and R2.

▶ r2 = R2

▶ r = ±
√
R2 (need to find the correct sign using scatterplot / slope)

Yes, the relationship really is that simple, R2 is r squared
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