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Four Assumptions for the Linear Model

@ Independence
» Observations aren't correlated with each other

@ Errors are normally distrubted with mean 0
» Want a random scattering above and below the horizontal line at 0

o Homoskedasticity

» The general spread of the residuals should be constant through the
whole graph
» Eg We don't want a megaphone shape pattern in the graph

e X and y's relationship is linear
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General Plan

Can we do anything with violated assumptions?

@ Yes, transformations!

@ Logarithms

(FORMAT: Response Var.'s Scale - Explanatory Var.'s Scale)
» Linear-Log

» Log-Linear

> Log-Log

v

@ Power transformations
» Square Root (generally of y)
» Square (generally of x)

@ Waaaay more that we can't get into
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Independence

Sometimes data is temporally (or spatially) related

@ Eg my chess rating over time
@ Have techinques for this

» Back shift operator: subtract this years ave. September temp from last
year's ave. September temp

» Moving average: our current prediction is the (weighted?) average of
the last few time points

> Auto-Regressive: Observations are correlated with their neighbors

Sometimes it's phsycially related
@ 6 green onions grown in the same small flower pot

@ Have techinques for this as well

» Mixed Models (not in this class)
» Side step the issue (average over the six green onions)
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Non-Normality

Sometimes data just behaves differently

CHECK FOR LURKING VARIABLE

» A varible not yet looked at could drive strange behaviro

| guess 3 heads out of four coin flips; | can only underguess by 1,
overguess by 3 (not symmetric!)

> Logistic Regression

@ Discreet data with very few non-0 numbers

» Discreet distribution over normal, eg Poisson Distribution
» Zero-Inflated Regression Model

It's just weird
» Bootstrap (later) or simulations (also later)
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Heteroskedasticity

A common violation of our assumptions is....heterskedasticity!
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Heteroskedasticity

A common violation of our assumptions is....heterskedasticity!

@ It's common the st. dev. of your residuals changes depending on
where you are at in the predicted vs residaul graph

@ Usually (but not always) scientifically expected

@ St. Dev. usually (but not always) balloons as the predictions increase

Is there a way to transform the data into a more “usable” form?
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A BRIEF MESSAGE FROM OUR SPONSORS
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Example

Mammal Body vs Brain Weight
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Example: Continued
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Goal

We want data in a linear form, randomly scattered around a line with
constant standard deviation (spread).

@ We need a monotonic function that takes in (positive) numeric data
@ and makes really large numbers not that large
@ while keeping the small numbers relatively small

@ and we want to be able to “back transform” (work backwards to get
the original data).

Ideas?
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Goal

We want data in a linear form, randomly scattered around a line with
constant standard deviation (spread).

@ We need a monotonic function that takes in (positive) numeric data
@ and makes really large numbers not that large
@ while keeping the small numbers relatively small

@ and we want to be able to “back transform” (work backwards to get
the original data).

Ideas? The logarithm does this, and so does the (positive) square root
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Example: Continued Some More
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Example: Predictions on Log-Log Scale

Mammal Body vs Brain Weight
Presented on the log base 10 scale

10000 1

1004

Log Brain Weight (g)

le-01 1e+01 1e+03
Log Body Weight (kg)

Grinnell College STA-209 October 6, 2025 14 /35



Back Transforming

Back Transforming is applying a function to an already transformed
variable to undo the transformation.

» Eg taking the square root of a squared variable
» Eg Undoing the log function by exponentiation
» Sounds more intimidating than it is

Usually back transformed values do well but not always

e Estimated spread (on the linear scale) balloons as you go up.
@ Being off by .1 log units...

» when the log value is low it's not bad (eg 10-5 = 3.16 vs 10-° = 3.98)
» when the log value is high is bad (eg 102 = 100, 10>! = 126)
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Example: Predictions on Linear-Linear Scale

Mammal Body vs Brain Weight
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Example: Predictions on Linear-Linear Scale

Mammal Body vs Brain Weight
Three major outliers removed

Brain Weight (g)
3 3
< <

N

a1

o
L

0 200 400
Body Weight (kg)

Grinnell College STA-209 October 6, 2025 17 /35



So what just happened?

Instead of

y = Bo + BiX +e

we fit

log(y) = Po + Pilog(X) +e

’ Raw Value \ Logio Value ‘

2 (=5 1) -.698
5 -301
1 0
5 698
500 2.698
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What's the catch?

@ We are modeling the log of the response, log(y), and not the
response, Y.

@ Best-fit-line is guaranteed “best” only on the scale modeled

@ And we are now fitting the median.....math is weird

Q: Wait, what??
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Interpretations Background

Well.....we are modeling the log of the response, log(y), and not the
response, Y.

@ We are assumign the errors are bell shaped on the log scale

» The distribution will be skewed when we back transform
» But the median remains the same

o Best-fit-line is guaranteed “best” only on the scale modeled

@ And we are now fitting the median.....math is weird

Q: Wait, what??
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Graphic Explanation

Histogram of log_normal
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Estimated Log-Log Regression Equation

log(y) = fo + B1 *log(X)
y = exp(ﬂAg —|—BAl>k|og(X))

= exp(fo) *exp(f1 * log(X))

<>
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Log-Log Model's Interpretation for BO

Two Interpretations:

BETTER:

When the log of the explanatory variable is 0, we expect the median
response to be exp(fp)

WORSE:

When the log of the explanatory variable is 0, we expect the
(mean/median) of the log of the response to be /3y
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Slope Interpretation Primer

A~

log(y) = fo + B * log(X)
9 = exp(fo + b1 * log(X))
exp(Bo) * exp(f1 * log(X))

<>
I

Yrew = exp(fo) * exp(f1 * log(1.10 x X))
Ynew = exp(ﬂAo) * exp(ﬁAl * log(X)) * exp(ﬁAl * log(1.10))
Yiew = exp(flo) * exp(P1  log(X)) * 1.10(4)

Yiew = §*1.10(%)
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Log-Log Model's Interpretation for 31

Two Interpretations

BETTER:

When the the explanatory variable increases by 10% we expect the median
response to increase by a multiplicative factor of 1.1%

WORSE:

When the log of the explanatory variable increases by 1, we expect the
(mean/median) of the log of the response to increase by 51
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Example Continued

Predicted log(Brain Weight) = 2.13 + .75 * log(Body Weight)

Bo: For a mammal with a log body weight of 0 (= the body weight of the
animal is 1kg), then the predicted (median) weight of it's brain is ?.14 =
8.499¢

B1: If the body weight of the animal increases by 10%, then the predicted
(median) brain weight increases by a multiplicative factor of 1.17% = 1.074
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Example Continued

Artic Fox has a body weight of 3.385kg, what is the predicted median
weight for it's brain?

Predicted log(Brain Weight) = 2.13 + .75 * log(Body Weight)
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Example Continued

Artic Fox has a body weight of 3.385kg, what is the predicted median
weight for it's brain?

Predicted log(Brain Weight) = 2.13 + .75 % log(3.385)

Predicted log(Brain Weight) = 3.044

Predicted Brain Weight = (394 = 20.999¢

Residual = Obs. — Predicted = 44.50 — 20.999 = 23.501
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Log-Linear

Estimate Log-Linear Regression Equation:

log(y)

[%: Interpretation-isthe-same-as-forthe log-log-model

BAO: If the explanatory variable is 0, then the median of the response is

exp(), we believe

~

[B1: For a one unit increase in X we expect the median response to

y

Bo + P X

— exp(fo + f1* X)

~ ~

exp(Bo) * exp(f1 * X)

increase by a mulitplicative factor of exp(BAl)
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Linear-Log

Estimate Linear-Log Regression Equation:

= fo + P * log(X)

| don’t know of any special interpretations to this one....useful if your
x-axis is stretched out waaay too far

Grinnell College STA-209 October 6, 2025 30/35



What's the point?

Our goal is to achieve a graph that is linear between whatever is on the
x-axis and whatever is on the y-axis with a random scattering points above
and below the line (4 assumptions)

@ We have techniques help us a way to achieve these goals

@ The log() transformation is popular to fix ballooning
heteroskedasticity
» Comes at a cost
» No “best” properties on the human scale
» The spread of our predictions balloons
» Comments can be restricted to medians, not means

@ Transformations in general can help us with this goal
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Other Transformations

@ Not uncommon for X to be replaced with X?

The response can be raised to a power

» Often square root or cubic root

» Box-Cox Transformation gives a formula to optimize what power to
raise the response to

» Useful if the units give an indication (see next slide)

o Generalized linear models (GLM's) is a way to deal with the
non-normal, quirky data via a different distribution
» Eg Logistic and Poisson regression
» Eg Exponential family

Finally, non-parametric methods such as ranking the data
» Calling Spearman’s Correlation....
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Algae Blooms

o
84 e
-
o
o |
o
)
o |
E o
)
> o | o
~ o
o |
N
o 8 © ]
T T T T T
0 50 100 150 200

Grinnell College

Concentration

STA-209

October 6, 2025

33/35



Algae Blooms: Transformed
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Next Time

How do we make a linear model when we have categories for our
explanatory variable?
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