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Four Assumptions for the Linear Model

Independence
▶ Observations aren’t correlated with each other

Errors are normally distrubted with mean 0
▶ Want a random scattering above and below the horizontal line at 0

Homoskedasticity
▶ The general spread of the residuals should be constant through the

whole graph
▶ Eg We don’t want a megaphone shape pattern in the graph

X and y’s relationship is linear
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General Plan

Can we do anything with violated assumptions?

Yes, transformations!

Logarithms
▶ (FORMAT: Response Var.’s Scale - Explanatory Var.’s Scale)
▶ Linear-Log
▶ Log-Linear
▶ Log-Log

Power transformations
▶ Square Root (generally of y)
▶ Square (generally of x)

Waaaay more that we can’t get into
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Independence

Sometimes data is temporally (or spatially) related

Eg my chess rating over time

Have techinques for this
▶ Back shift operator: subtract this years ave. September temp from last

year’s ave. September temp
▶ Moving average: our current prediction is the (weighted?) average of

the last few time points
▶ Auto-Regressive: Observations are correlated with their neighbors

Sometimes it’s phsycially related

6 green onions grown in the same small flower pot

Have techinques for this as well
▶ Mixed Models (not in this class)
▶ Side step the issue (average over the six green onions)
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Non-Normality

Sometimes data just behaves differently

CHECK FOR LURKING VARIABLE
▶ A varible not yet looked at could drive strange behaviro

I guess 3 heads out of four coin flips; I can only underguess by 1,
overguess by 3 (not symmetric!)

▶ Logistic Regression

Discreet data with very few non-0 numbers
▶ Discreet distribution over normal, eg Poisson Distribution
▶ Zero-Inflated Regression Model

It’s just weird
▶ Bootstrap (later) or simulations (also later)
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Heteroskedasticity

A common violation of our assumptions is....heterskedasticity!
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Heteroskedasticity

A common violation of our assumptions is....heterskedasticity!

It’s common the st. dev. of your residuals changes depending on
where you are at in the predicted vs residaul graph

Usually (but not always) scientifically expected

St. Dev. usually (but not always) balloons as the predictions increase

Is there a way to transform the data into a more “usable” form?
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A BRIEF MESSAGE FROM OUR SPONSORS
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Example: Continued
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Goal

We want data in a linear form, randomly scattered around a line with
constant standard deviation (spread).

We need a monotonic function that takes in (positive) numeric data

and makes really large numbers not that large

while keeping the small numbers relatively small

and we want to be able to “back transform” (work backwards to get
the original data).

Ideas?
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Goal

We want data in a linear form, randomly scattered around a line with
constant standard deviation (spread).

We need a monotonic function that takes in (positive) numeric data

and makes really large numbers not that large

while keeping the small numbers relatively small

and we want to be able to “back transform” (work backwards to get
the original data).

Ideas? The logarithm does this, and so does the (positive) square root
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Example: Continued Some More
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Example: Predictions on Log-Log Scale
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Back Transforming

Back Transforming is applying a function to an already transformed
variable to undo the transformation.

▶ Eg taking the square root of a squared variable
▶ Eg Undoing the log function by exponentiation
▶ Sounds more intimidating than it is

Usually back transformed values do well but not always

Estimated spread (on the linear scale) balloons as you go up.

Being off by .1 log units...
▶ when the log value is low it’s not bad (eg 10.5 = 3.16 vs 10.6 = 3.98)
▶ when the log value is high is bad (eg 102 = 100, 102.1 = 126)
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Example: Predictions on Linear-Linear Scale
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Example: Predictions on Linear-Linear Scale
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So what just happened?

Instead of

y = β0 + β1X + e

we fit

log(y) = β0 + β1log(X ) + e

Raw Value Log10 Value

.2 (=5−1) -.698

.5 -.301

1 0

5 .698

500 2.698
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What’s the catch?

Well.....

We are modeling the log of the response, log(y), and not the
response, y.

Best-fit-line is guaranteed “best” only on the scale modeled

And we are now fitting the median.....math is weird

Q: Wait, what??
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Interpretations Background

Well.....we are modeling the log of the response, log(y), and not the
response, y.

We are assumign the errors are bell shaped on the log scale
▶ The distribution will be skewed when we back transform
▶ But the median remains the same

Best-fit-line is guaranteed “best” only on the scale modeled

And we are now fitting the median.....math is weird

Q: Wait, what??
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Graphic Explanation
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Estimated Log-Log Regression Equation

ˆlog(y) = β̂0 + β̂1 ∗ log(X )

ŷ = exp(β̂0 + β̂1 ∗ log(X ))

ŷ = exp(β̂0) ∗ exp(β̂1 ∗ log(X ))
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Log-Log Model’s Interpretation for β̂0

Two Interpretations:

BETTER:

When the log of the explanatory variable is 0, we expect the median
response to be exp(β̂0)

WORSE:

When the log of the explanatory variable is 0, we expect the
(mean/median) of the log of the response to be β̂0
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Slope Interpretation Primer

ˆlog(y) = β̂0 + β̂1 ∗ log(X )

ŷ = exp(β̂0 + β̂1 ∗ log(X ))

ŷ = exp(β̂0) ∗ exp(β̂1 ∗ log(X ))

ˆynew = exp(β̂0) ∗ exp(β̂1 ∗ log(1.10 ∗ X ))

ˆynew = exp(β̂0) ∗ exp(β̂1 ∗ log(X )) ∗ exp(β̂1 ∗ log(1.10))

ˆynew = exp(β̂0) ∗ exp(β̂1 ∗ log(X )) ∗ 1.10(β̂1)

ˆynew = ŷ ∗ 1.10(β̂1)
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Log-Log Model’s Interpretation for β̂1

Two Interpretations

BETTER:

When the the explanatory variable increases by 10% we expect the median

response to increase by a multiplicative factor of 1.1β̂1

WORSE:

When the log of the explanatory variable increases by 1, we expect the
(mean/median) of the log of the response to increase by β̂1
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Example Continued

Predicted log(Brain Weight) = 2.13 + .75 ∗ log(Body Weight)

β0: For a mammal with a log body weight of 0 (= the body weight of the
animal is 1kg), then the predicted (median) weight of it’s brain is e2.14 =
8.499g

β1: If the body weight of the animal increases by 10%, then the predicted
(median) brain weight increases by a multiplicative factor of 1.1.75 = 1.074
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Example Continued

Artic Fox has a body weight of 3.385kg, what is the predicted median
weight for it’s brain?

Predicted log(Brain Weight) = 2.13 + .75 ∗ log(Body Weight)
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Example Continued

Artic Fox has a body weight of 3.385kg, what is the predicted median
weight for it’s brain?

Predicted log(Brain Weight) = 2.13 + .75 ∗ log(3.385)

Predicted log(Brain Weight) = 3.044

Predicted Brain Weight = e(3.044) = 20.999g

Residual = Obs. − Predicted = 44.50 − 20.999 = 23.501
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Log-Linear

Estimate Log-Linear Regression Equation:

ˆlog(y) = β̂0 + β̂1 ∗ X

ŷ = exp(β̂0 + β̂1 ∗ X )

ŷ = exp(β̂0) ∗ exp(β̂1 ∗ X )

β̂0: Interpretation is the same as for the log-log model
β̂0: If the explanatory variable is 0, then the median of the response is
exp(), we believe

β̂1: For a one unit increase in X we expect the median response to
increase by a mulitplicative factor of exp(β̂1)
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Linear-Log

Estimate Linear-Log Regression Equation:

ŷ = β̂0 + β̂1 ∗ log(X )

I don’t know of any special interpretations to this one....useful if your
x-axis is stretched out waaay too far
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What’s the point?

Our goal is to achieve a graph that is linear between whatever is on the
x-axis and whatever is on the y-axis with a random scattering points above
and below the line (4 assumptions)

We have techniques help us a way to achieve these goals

The log() transformation is popular to fix ballooning
heteroskedasticity

▶ Comes at a cost
▶ No “best” properties on the human scale
▶ The spread of our predictions balloons
▶ Comments can be restricted to medians, not means

Transformations in general can help us with this goal
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Other Transformations

Not uncommon for X to be replaced with X2

The response can be raised to a power
▶ Often square root or cubic root
▶ Box-Cox Transformation gives a formula to optimize what power to

raise the response to
▶ Useful if the units give an indication (see next slide)

Generalized linear models (GLM’s) is a way to deal with the
non-normal, quirky data via a different distribution

▶ Eg Logistic and Poisson regression
▶ Eg Exponential family

Finally, non-parametric methods such as ranking the data
▶ Calling Spearman’s Correlation....
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Algae Blooms
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Algae Blooms: Transformed
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Next Time

How do we make a linear model when we have categories for our
explanatory variable?
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